Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nature ; 612(7940): 477-482, 2022 12.
Article in English | MEDLINE | ID: covidwho-2160238

ABSTRACT

Atmospheric methane growth reached an exceptionally high rate of 15.1 ± 0.4 parts per billion per year in 2020 despite a probable decrease in anthropogenic methane emissions during COVID-19 lockdowns1. Here we quantify changes in methane sources and in its atmospheric sink in 2020 compared with 2019. We find that, globally, total anthropogenic emissions decreased by 1.2 ± 0.1 teragrams of methane per year (Tg CH4 yr-1), fire emissions decreased by 6.5 ± 0.1 Tg CH4 yr-1 and wetland emissions increased by 6.0 ± 2.3 Tg CH4 yr-1. Tropospheric OH concentration decreased by 1.6 ± 0.2 per cent relative to 2019, mainly as a result of lower anthropogenic nitrogen oxide (NOx) emissions and associated lower free tropospheric ozone during pandemic lockdowns2. From atmospheric inversions, we also infer that global net emissions increased by 6.9 ± 2.1 Tg CH4 yr-1 in 2020 relative to 2019, and global methane removal from reaction with OH decreased by 7.5 ± 0.8 Tg CH4 yr-1. Therefore, we attribute the methane growth rate anomaly in 2020 relative to 2019 to lower OH sink (53 ± 10 per cent) and higher natural emissions (47 ± 16 per cent), mostly from wetlands. In line with previous findings3,4, our results imply that wetland methane emissions are sensitive to a warmer and wetter climate and could act as a positive feedback mechanism in the future. Our study also suggests that nitrogen oxide emission trends need to be taken into account when implementing the global anthropogenic methane emissions reduction pledge5.


Subject(s)
Atmosphere , Methane , Wetlands , Humans , Communicable Disease Control/statistics & numerical data , COVID-19/epidemiology , Methane/analysis , Ozone/analysis , Atmosphere/chemistry , Human Activities/statistics & numerical data , Time Factors , History, 21st Century , Temperature , Humidity , Nitrogen Oxides/analysis
2.
Front Neurol ; 12: 769511, 2021.
Article in English | MEDLINE | ID: covidwho-1606848

ABSTRACT

Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a multisystem medical condition with heterogeneous symptom expression. Currently, there is no effective cure or treatment for the standard care of patients. A variety of ME/CFS symptoms can be linked to the vital life functions of the brainstem, the lower extension of the brain best known as the hub relaying information back and forth between the cerebral cortex and various parts of the body. Objective/Methods: Over the past decade, Magnetic Resonance Imaging (MRI) studies have emerged to understand ME/CFS with interesting findings, but there has lacked a synthesized evaluation of what has been found thus far regarding the involvement of the brainstem. We conducted this study to review and evaluate the recent MRI findings via a literature search of the MEDLINE database, from which 11 studies met the eligibility criteria. Findings: Data showed that MRI studies frequently reported structural changes in the white and gray matter. Abnormalities of the functional connectivity within the brainstem and with other brain regions have also been found. The studies have suggested possible mechanisms including astrocyte dysfunction, cerebral perfusion impairment, impaired nerve conduction, and neuroinflammation involving the brainstem, which may at least partially explain a substantial portion of the ME/CFS symptoms and their heterogeneous presentations in individual patients. Conclusions: This review draws research attention to the role of the brainstem in ME/CFS, helping enlighten future work to uncover the pathologies and mechanisms of this complex medical condition, for improved management and patient care.

3.
Biomass Convers Biorefin ; : 1-12, 2021 Sep 25.
Article in English | MEDLINE | ID: covidwho-1446260

ABSTRACT

Currently, the enormous generation of contaminated disposed face masks raises many environmental concerns. The present study provides a novel route for efficient crude bio-oil production from disposed masks through co-hydrothermal liquefaction (Co-HTL) with Spirulina platensis grown in wastewater. Ultimate and proximate analysis confirmed that S. platensis contains relatively high nitrogen content (9.13%dw), which decreased by increasing the mask blend ratio. However, carbon and hydrogen contents were higher in masks (83.84 and 13.77%dw, respectively). In addition, masks showed 29.6% higher volatiles than S. platensis, which resulted in 94.2% lower ash content. Thermal decomposition of masks started at a higher temperature (≈330 °C) comparing to S. platensis (≈208 °C). The highest bio-oil yield was recorded by HTL of S. platensis and Co-HTL with 25% (w/w) masks at 300 °C, which showed insignificant differences with each other. GC/MS analysis of the bio-oil produced from HTL of algal biomass showed a high proportion of nitrogen- and oxygen-containing compounds (3.6% and 11.9%, respectively), with relatively low hydrocarbons (17.4%). Mask blend ratio at 25% reduced the nitrogen-containing compounds by 55.6% and enhanced the hydrocarbons by 43.7%. Moreover, blending of masks with S. platensis enhanced the compounds within the diesel range in favor of gasoline and heavy oil. Overall, the present study provides an innovative route for enhanced bio-oil production through mask recycling coupled with wastewater treatment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13399-021-01891-2.

SELECTION OF CITATIONS
SEARCH DETAIL